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Introduction

We have a simple example of a time-optimal control problem subject to the linear heat
equation and pointwise bound constraints on the control. The goal is to steer the heat
equation into an L2-ball centered at some desired state in the shortest time possible by an
appropriate choice of the control. The time-optimal control problem can be transformed
to a fixed time interval and both versions are given below.

This particular problem utilizes a control function varying in time only. The exact
solution is unknown, but numerical values are provided.

The problem has been used as numerical test in [Bonifacius et al., 2018a, Example 5.2].

Variables & Notation

Unknowns

q ∈ Q = L∞((0, T );R2) control variable

u ∈ U = H1((0, T );L2(Ω)) ∩ L2((0, T );H1
0 (Ω) ∩H2(Ω)) state variable

T terminal time

Given Data

Ω = (0, 1)2 spatial domain

ud = 0 ∈ H1
0 (Ω) desired state

δ0 =
1

10
> 0 tolerance to desired state

α ≥ 0 control cost parameter (arbitrary)

u0 = 4 sin(πx2
1) sin(πx3

2) initial state
c = 0.03 coefficient in the PDE
qa = −1.5 lower control bound
qb = 0 upper control bound
ω1 = (0, 0.5)× (0, 1) control domain 1
ω2 = (0.5, 1)× (0, 0.5) control domain 2

The control-action operator is defined as

B : R2 → L2(Ω),

q = (q1, q2) 7→ Bq = q1χω1 + q2χω2

where χω1 and χω2 denote the characteristic functions on ω1 and ω2.
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Problem Description

Minimize j(T, q) := T +
α

2

∫ T

0
‖q(t)‖2R2 dt,

subject to



T > 0,

∂tu− c4u = Bq, in (0, T )× Ω,

u = 0, on (0, T )× ∂Ω,

u(0) = u0, in Ω,

1

2
‖u(T )− ud‖2L2(Ω) −

δ2
0

2
≤ 0,

qa ≤ q(t) ≤ qb, t ∈ (0, T ).

(P )

The state equation is transformed to the reference time interval (0, 1) in order to deal
with the variable time horizon; see [Bonifacius et al., 2018a, Section 3.1] for details. Thus,
the transformed version of (P ) reads

Minimize ĵ(T, q̂) := T
(

1 +
α

2

)∫ 1

0
‖q̂(t)‖2R2 dt,

subject to



T > 0,

∂tû− Tc4û = TBq, in (0, 1)× Ω,

û = 0, on (0, 1)× ∂Ω,

û(0) = u0, in Ω,

1

2
‖û(1)− ud‖2L2(Ω) −

δ2
0

2
≤ 0,

qa ≤ q̂(t) ≤ qb, t ∈ (0, 1).

(P̂ )

Note that the problems (P ) and (P̂ ) are equivalent. The unknowns for the trans-
formed problem (P̂ ) are q̂ ∈ Q̂ = L∞((0, 1);R2) and û ∈ Û = H1((0, 1);L2(Ω)) ∩
L2((0, 1);H1

0 (Ω) ∩H2(Ω)).

Optimality System

The first-order necessary optimality conditions for (P̂ ) are formally given as follows: for
given local minimizers q ∈ Q̂ u ∈ Û , T > 0 there exists Lagrange multipliers µ > 0 and
z ∈W (0, 1) = {v ∈ L2(0, 1;H1

0 (Ω)) : ∂tv ∈ L2(0, 1;H−1(Ω))} such that∫ 1

0
1 +

α

2
‖q(t)‖2R2 +

(
Bq(t) + c4u(t), z(t)

)
L2(Ω)

dt = 0,∫ 1

0
T
(
α q(t) +B∗z(t), q(t)− q(t)

)
R2 dt ≥ 0, ∀qa ≤ q(t) ≤ qb,

‖u(1)− ud‖L2(Ω) = δ0,
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where the adjoint state z ∈W (0, 1) is determined by

− ∂tz(t)− T4z(t) = 0, t ∈ (0, 1) z(1) = µ
(
u(1)− ud

)
. (0.1)

It can be shown that the above optimality conditions are satisfied in the given example,
see, [Bonifacius et al., 2018a, Theorem 3.10].

Supplementary Material

For the example, no analytical solution is known. However, numerical values from [Boni-
facius et al., 2018a, Example 5.2] are provided. The state and adjoint state equations
are discretized by means of the discontinuous Galerkin scheme in time (corresponding to
a version of the implicit Euler method) and linear finite elements in space. This scheme
is guaranteed to converge with a rate |log k|(k + h2) with k denoting the temporal mesh
size and h the spatial mesh size; cf. [Bonifacius et al., 2018a, Corollary 4.16]. For further
details on the implementation we refer to [Bonifacius et al., 2018a, Section 5].

The following table provides results for [Bonifacius et al., 2018a, Example 5.2] and they
were provided by the authors for different values of the control cost parameter α, number
of time steps M and number of spatial nodes N . The analysis for the case α = 0 can be
found in Bonifacius et al. [2018b].

α = 10 α = 1 α = 0.1 α = 0.01 α = 0.001 α = 0

M N T

640 289 2.605661 2.075153 1.845201 1.808456 1.808257 1.808255
1280 1089 2.593450 2.061039 1.830766 1.794457 1.794261 1.794260
2560 4225 2.589968 2.057095 1.826762 1.790567 1.790372 1.790370
5120 16641 2.588884 2.055897 1.825559 1.789395 1.789200 1.789198

10240 16641 2.588670 2.055684 1.825355 1.789193 1.788998 1.788997
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