Introduction

The problem at hand is an optimal control problem in which the state is determined by variational inequality, viz. the elliptic obstacle problem, rather than by a partial differential equation. In fact, the variational inequality is formulated equivalently as an elliptic equation plus a complementarity system. Consequently, the optimal control problem is a function space MPCC (mathematical program with equilibrium constraints).

The problem and its solution are taken from [Meyer and Thoma, 2013, Example 7.1].

Variables \& Notation

Unknowns

$$
\begin{aligned}
u \in L^{2}(\Omega) & \text { control variable } \\
y \in H_{0}^{1}(\Omega) & \text { state variable } \\
\xi \in L^{2}(\Omega) & \text { slack variable }
\end{aligned}
$$

Given Data

The given data is chosen in a way which admits an analytic solution.

$$
\begin{gathered}
\Omega=(0,1)^{2} \\
\Gamma \\
\Omega_{1} \quad \begin{array}{l}
\text { (see below) } \\
\Omega_{2}=(0.0,0.5) \times(0.0,0.8) \\
\Omega_{3}=(0.5,1.0) \times(0.0,0.8)
\end{array} \\
y_{d} \\
y_{d}(x)= \begin{cases}\text { subd boundary } \\
\text { subdomain of } \Omega\end{cases} \\
u_{d}(x)= \begin{cases}-\left.400\left(q_{1}\left(y_{1}\right)+q_{2}\left(y_{2}\right)\right)\right|_{y=Q^{\top}(x-\widehat{x})+\widehat{x}}, & x \in \Omega_{1} \\
z_{1}\left(x_{1}\right) z_{2}\left(x_{2}\right), & x \in \Omega_{2} \quad \text { elsewhere of } \Omega \\
0 & \\
p_{1}\left(Q^{\top}(x-\widehat{x})+\widehat{x}\right), & x \in \Omega_{1} \\
-z_{1}^{\prime \prime}\left(x_{1}\right)-z_{2}^{\prime \prime}\left(x_{2}\right), & x \in \Omega_{2} \\
-z_{1}\left(x_{1}-0.5\right) z_{2}\left(x_{2}\right), & x \in \Omega_{3} \\
0 & \text { elsewhere }\end{cases} \\
\hline \text { desired state (discontinuous) }
\end{gathered}
$$

The subdomain Ω_{1} is a square with midpoint $\widehat{x}=(0.8,0.9)$ and edge length 0.1 , which has been rotated about its midpoint by 30 degrees in counter-clockwise direction. The four vertices of Ω_{1} can thus be obtained from

$$
\left(\begin{array}{llll}
\widehat{x} & \widehat{x} & \widehat{x} & \widehat{x}
\end{array}\right)+Q\left(\begin{array}{rrrr}
-0.05 & 0.05 & 0.05 & -0.05 \\
-0.05 & -0.05 & 0.05 & 0.05
\end{array}\right) \approx\left(\begin{array}{rrrr}
0.7817 & 0.8683 & 0.8183 & 0.7317 \\
0.8317 & 0.8817 & 0.9683 & 0.9183
\end{array}\right)
$$

with the rotation matrix

$$
Q=\left(\begin{array}{rr}
\cos \frac{\pi}{6} & -\sin \frac{\pi}{6} \\
\sin \frac{\pi}{6} & \cos \frac{\pi}{6}
\end{array}\right)
$$

Note that Ω_{1} does not intersect Ω_{2} nor Ω_{3}. The remaining pieces of data are

$$
\begin{aligned}
z_{1}\left(x_{1}\right) & =-4096 x_{1}^{6}+6144 x_{1}^{5}-3072 x_{1}^{4}+512 x_{1}^{3} \\
z_{2}\left(x_{2}\right) & =-244.140625 x_{2}^{6}+585.937500 x_{2}^{5}-468.750 x_{2}^{4}+125 x_{2}^{3} \\
q_{1}\left(y_{1}\right) & =-200\left(y_{1}-0.8\right)^{2}+0.5 \\
q_{2}\left(y_{2}\right) & =-200\left(y_{2}-0.9\right)^{2}+0.5 \\
p_{1}\left(y_{1}, y_{2}\right) & =q_{1}\left(y_{1}\right) q_{2}\left(y_{2}\right) .
\end{aligned}
$$

Problem Description

$$
\begin{array}{rll}
\text { Minimize } & \frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\|u-u_{d}\right\|_{L^{2}(\Omega)}^{2} \\
\text { s.t. } & \left\{\begin{aligned}
-\triangle y=u+\xi & \text { in } \Omega \\
y=0 & \text { on } \partial \Omega \\
y \geq 0, \quad \xi \geq 0, \quad y \xi=0 & \text { in } \Omega
\end{aligned}\right.
\end{array}
$$

Optimality System

Besides the state $y \in H_{0}^{1}(\Omega)$, control $u \in L^{2}(\Omega)$ and slack variable $\xi \in L^{2}(\Omega)$, the optimality system consists of the adjoint state $p \in H_{0}^{1}(\Omega)$ and a Lagrange multiplier $\mu \in H^{-1}(\Omega)$ pertaining to the constraint $y \geq 0$. The adjoint state p serves a double role, since it also acts as Lagrange multiplier for the pointwise constraint $\xi \geq 0$. As usual for MPCCs, no multiplier is introduced for the constraint $y \xi=0$.

It should be noted that for MPCCs, a canocical first-order optimality condition does not exist. The following system represents a particular set of first-order necessary conditions, viz. of strongly stationary type.

$$
\begin{aligned}
-\triangle y & =u+\xi & & \text { in } \Omega \\
y & =0 & & \text { on } \partial \Omega \\
-\triangle p & =y-y_{d}+\mu & & \text { in } \Omega \\
p & =0 & & \text { on } \partial \Omega \\
y \geq 0, \quad \xi \geq 0, \quad y \xi & =0 & & \text { in } \Omega \\
\mu y & =0 & & \text { in } \Omega \text { a weak sense } \\
p \xi & =0 & & \text { in } \Omega \\
p & \geq 0 & & \text { in } B \\
\mu & \leq 0 & & \text { in } B \text { in a weak sense. }
\end{aligned}
$$

The set $B=\{x \in \Omega: y(x)=\xi(x)=0\}$ is termed the bi-active set. It is the last two conditions on the signs of p and μ which are particular for the concept of strong stationarity.

Since μ belongs only to $H^{-1}(\Omega)$, two of the conditions above must be imposed in a weak sense. This can be done in the following way:

$$
\begin{array}{cc}
\langle\mu, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}=0 & \text { for all } v \in H_{0}^{1}(\Omega) \text { satisfying } v(x)=0 \text { where } y(x)=0 \\
\langle\mu, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} \leq 0 & \text { for all } v \in H_{0}^{1}(\Omega) \text { satisfying } v(x) \geq 0 \text { where } y(x)=0 \\
\text { and } v(x)=0 \text { where } \xi(x)>0 .
\end{array}
$$

Supplementary Material

The following functions given in [Meyer and Thoma, 2013, Example 7.1] satisfy the set of necessary optimality conditions of strongly stationary type above. An important feature of this selection is that there is a nontrivial bi-active set:

$$
B=\{x \in \Omega: y(x)=\xi(x)=0\}=(0.0,1.0) \times(0.8,1.0) .
$$

Moreover, second-order optimality conditions have been verified, and thus (y, ξ, u) is guaranteed to represent a local minimum.

$$
\left.\begin{array}{rl}
y & =\left\{\begin{array}{lll}
z_{1}\left(x_{1}\right) z_{2}\left(x_{2}\right), & x \in \Omega_{2} \\
0 & \text { elsewhere }
\end{array}\right. \\
u & = \begin{cases}-z_{1}^{\prime \prime}\left(x_{1}\right)-z_{2}^{\prime \prime}\left(x_{2}\right), & x \in \Omega_{2} \\
-z_{1}\left(x_{1}-0.5\right) z_{2}\left(x_{2}\right), & x \in \Omega_{3} \\
0 & \text { elsewhere }\end{cases} \\
\xi & = \begin{cases}z_{1}\left(x_{1}-0.5\right) z_{2}\left(x_{2}\right), & x \in \Omega_{3} \\
0 & \text { elsewhere }\end{cases} \\
p & \text { (continuous) } \left.C^{2}(\bar{\Omega})\right) \\
p_{1}\left(Q^{\top} x\right), & x \in \Omega_{1} \\
0 & \text { elsewhere }
\end{array} \quad \text { (continuous, but not } C^{1}(\Omega)\right)
$$

where n_{1} is the unit outer normal to the rotated square subdomain Ω_{1}. Note that μ is a line functional concentrated on $\partial \Omega_{1}$. In more explicit terms, it can be expressed as

$$
\begin{aligned}
\langle\mu, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}= & \int_{0.75}^{0.85} Q\binom{-0.5 q_{1}^{\prime}\left(x_{1}\right)}{20 q_{1}\left(x_{1}\right)} \cdot\binom{0}{-1} v\left(x_{1}, 0.85\right) \mathrm{d} x_{1} \\
& +\int_{0.75}^{0.85} Q\binom{-0.5 q_{1}^{\prime}\left(x_{1}\right)}{-20 q_{1}\left(x_{1}\right)} \cdot\binom{0}{1} v\left(x_{1}, 0.95\right) \mathrm{d} x_{1} \\
& +\int_{0.85}^{0.95} Q\binom{20 q_{2}\left(x_{2}\right)}{-0.5 q_{2}^{\prime}\left(x_{2}\right)} \cdot\binom{-1}{0} v\left(0.75, x_{2}\right) \mathrm{d} x_{2} \\
& +\int_{0.85}^{0.95} Q\binom{-20 q_{2}\left(x_{2}\right)}{-0.5 q_{2}^{\prime}\left(x_{2}\right)} \cdot\binom{1}{0} v\left(0.85, x_{2}\right) \mathrm{d} x_{2} .
\end{aligned}
$$

The remaining data are

$$
\begin{aligned}
& z_{1}^{\prime \prime}\left(x_{1}\right)=-122880 x_{1}^{4}+122880 x_{1}^{3}-36864 x_{1}^{2}+3072 x_{1} \\
& z_{2}^{\prime \prime}\left(x_{2}\right)=-7324.218750 x_{2}^{4}+11718.75 x_{2}^{3}-5625 x_{2}^{2}+750 x_{2}^{1} \\
& q_{1}^{\prime}\left(x_{1}\right)=-400\left(x_{1}-0.8\right) \\
& q_{2}^{\prime}\left(x_{2}\right)=-400\left(x_{2}-0.9\right) .
\end{aligned}
$$

Revision History

- 2021-02-11: fixed typo in transformation of data y_{d} and u_{d} on Ω_{1}
- 2013-03-01: problem added to the collection

References

C. Meyer and O. Thoma. A priori finite element error analysis for optimal control of the obstacle problem. SIAM Journal on Numerical Analysis, 51(1):605-628, 2013. doi: 10.1137/110836092.

