MPCCDIST1 (2021-02-21) ID:4 OPTPDE Problem Collection

Introduction

The problem at hand is an optimal control problem in which the state is determined by
variational inequality, viz. the elliptic obstacle problem, rather than by a partial differen-
tial equation. In fact, the variational inequality is formulated equivalently as an elliptic
equation plus a complementarity system. Consequently, the optimal control problem is
a function space MPCC (mathematical program with equilibrium constraints).

The problem and its solution are taken from [Meyer and Thoma, 2013, Example 7.1].

Variables & Notation

Unknowns
u € L*(Q)  control variable
y € HY(Q) state variable
€€ L*(Q) slack variable
Given Data

The given data is chosen in a way which admits an analytic solution.

Q=(0,1)? computational domain
r its boundary
Q1 (see below) subdomain of 2

3 = (0.0,0.5) x (0.0,0.8) subdomain of
3 = (0.5,1.0) x (0.0,0.8) subdomain of

—400 (CI1 (yl) + Q2(y2)) ‘y:QT(:p—E)-i-?:’ T € Ql

ya(r) =< 2 (71) z2(z2), x €Oy desired state (discontinuous)
0 elsewhere
pl(QT(ZL‘ —I)+2), €
o o , cn
ug(z) = ) = () * 2 desired control (discontinuous)

—z1(x1 — 0.5) z9(x2), x € Q3

0 elsewhere
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The subdomain 25 is a square with midpoint = (0.8,0.9) and edge length 0.1, which
has been rotated about its midpoint by 30 degrees in counter-clockwise direction. The
four vertices of €2; can thus be obtained from

(fE = = 3)—1—@ —0.05 0.05 0.05 —0.05\ _ (0.7817 0.8683 0.8183 0.7317
—0.05 —0.05 0.05 0.05) ~ \0.8317 0.8817 0.9683 0.9183

with the rotation matrix
s M s
Q: <C.OS76r Slng>'
Sin % COS 6

Note that €21 does not intersect {29 nor {23. The remaining pieces of data are

(z1) = —4 09625 + 6 14427 — 3 072 2] + 51223
zo(g) = —244.140 625 x5 + 585.937 500 x5 — 468.750 x5 + 125 23
q1(y1) = =200 (y1 — 0.8)* + 0.5

(y2)

) =

21{T1

g2(y2) = —200 (y2 — 0.9)% + 0.5
P1(yY1, Y2 q1(y1) g2(y2)-

Problem Description

1

llu = udl 720
—Ay=u+¢ in Q

s.t. y=20 on 0f)

y=>0, £€=20, y&=0 inQ.

L 1
Minimize §|Iy - de%Q(Q) +

Optimality System

Besides the state y € H(€2), control u € L?*(Q2) and slack variable ¢ € L%(Q), the
optimality system consists of the adjoint state p € H&(Q) and a Lagrange multiplier
€ H1(Q) pertaining to the constraint y > 0. The adjoint state p serves a double role,
since it also acts as Lagrange multiplier for the pointwise constraint & > 0. As usual for
MPCCs, no multiplier is introduced for the constraint y & = 0.

It should be noted that for MPCCs, a canocical first-order optimality condition does not
exist. The following system represents a particular set of first-order necessary conditions,
viz. of strongly stationary type.
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—Ay=u+¢ in Q
y=20 on 02
—Ap=y—yit+p inQ
p=20 on 0f)
u—ug—p=>0 in Q
y=>0, £>0, y&=0 in Q
py =20 in 2 a weak sense
p&E=0 in Q
pZO in B
w<0 in B in a weak sense.

The set B = {x € Q : y(x) = &(x) = 0} is termed the bi-active set. It is the last
two conditions on the signs of p and p which are particular for the concept of strong
stationarity.

Since p belongs only to H~1(£2), two of the conditions above must be imposed in a weak
sense. This can be done in the following way:

(V) g-1),m1 ) =0 forallve HY(Q) satisfying v(z) = 0 where y(z) =
(V) g-10),m1 () S0 forallve HJ(Q) satisfying v(x) > 0 where y(z) =
and v(z) = 0 where &(x) > 0.

Supplementary Material

The following functions given in [Meyer and Thoma, 2013, Example 7.1| satisfy the set of
necessary optimality conditions of strongly stationary type above. An important feature
of this selection is that there is a nontrivial bi-active set:

B={zeQ:y(z)=£,)=0}=(0.0,1.0) x (0.8,1.0).
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Moreover, second-order optimality conditions have been verified, and thus (y,&,u) is
guaranteed to represent a local minimum.

€N o)
Y= z1(21) 22(72), @ € (of class C%(12))
0 elsewhere
_z’ll(xl) — Zél(xQ), xTr & QQ
u = 72’1(1}1 *05) 22($2)7 HAIS Q3
0 elsewhere
—0.5 e N
€= z1(71 ) z2(z2), = 3 (continuous)
0 elsewhere
T Q
. nQ'x), ze€h (continuous, but not C*(£))
0 elsewhere

(s v) -1(0),mL () = / Vpla, -nivds,
o0

where n; is the unit outer normal to the rotated square subdomain ;. Note that u is a
line functional concentrated on 92;. In more explicit terms, it can be expressed as

(V) g-1(0),H11 Q) = /Oi? Q <_02.(?§1i((511))> ‘ <_01> v(x1,0.85) dxy
o @ (Coame)-(2) venosman
n /O ::562 <—§-05(£12§((222))> : (01> 0(0.75, 2) ds
L 2 (C) (o) vossmyan

The remaining data are

2 (x1) = —122 880 2] + 122 880 23 — 36 86422 4+ 3 072z,

2 (19) = —7 324.218 750 x5 + 11 718.75 x5 — 5 625 23 + 750 =3
q)(x1) = —400 (z1 — 0.8)

q5(w2) = —400 (23 — 0.9).

Revision History

e 2021-02-11: fixed typo in transformation of data yq and ug on 4
e 2013-03-01: problem added to the collection
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