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Introduction

The problem at hand is an optimal control problem in which the state is determined by
variational inequality, viz. the elliptic obstacle problem, rather than by a partial differen-
tial equation. In fact, the variational inequality is formulated equivalently as an elliptic
equation plus a complementarity system. Consequently, the optimal control problem is
a function space MPCC (mathematical program with equilibrium constraints).

The problem and its solution are taken from [Meyer and Thoma, 2013, Example 7.1].

Variables & Notation

Unknowns

u ∈ L2(Ω) control variable

y ∈ H1
0 (Ω) state variable

ξ ∈ L2(Ω) slack variable

Given Data

The given data is chosen in a way which admits an analytic solution.

Ω = (0, 1)2 computational domain
Γ its boundary

Ω1 (see below) subdomain of Ω

Ω2 = (0.0, 0.5)× (0.0, 0.8) subdomain of Ω

Ω3 = (0.5, 1.0)× (0.0, 0.8) subdomain of Ω

yd(x) =


−400

(
q1(y1) + q2(y2)

)∣∣
y=Q>(x−x̂)+x̂

, x ∈ Ω1

z1(x1) z2(x2), x ∈ Ω2

0 elsewhere

desired state (discontinuous)

ud(x) =


p1(Q>(x− x̂) + x̂), x ∈ Ω1

−z′′1 (x1)− z′′2 (x2), x ∈ Ω2

−z1(x1 − 0.5) z2(x2), x ∈ Ω3

0 elsewhere

desired control (discontinuous)

http://www.optpde.net/mpccdist1 1

http://www.optpde.net/mpccdist1


MPCCDIST1 (2021–02–21) ID:4 OPTPDE Problem Collection

The subdomain Ω1 is a square with midpoint x̂ = (0.8, 0.9) and edge length 0.1, which
has been rotated about its midpoint by 30 degrees in counter-clockwise direction. The
four vertices of Ω1 can thus be obtained from

(
x̂ x̂ x̂ x̂

)
+Q

(
−0.05 0.05 0.05 −0.05
−0.05 −0.05 0.05 0.05

)
≈
(

0.7817 0.8683 0.8183 0.7317
0.8317 0.8817 0.9683 0.9183

)
with the rotation matrix

Q =

(
cos π6 − sin π

6
sin π

6 cos π6

)
.

Note that Ω1 does not intersect Ω2 nor Ω3. The remaining pieces of data are

z1(x1) = −4 096x6
1 + 6 144x5

1 − 3 072x4
1 + 512x3

1

z2(x2) = −244.140 625x6
2 + 585.937 500x5

2 − 468.750x4
2 + 125x3

2

q1(y1) = −200 (y1 − 0.8)2 + 0.5

q2(y2) = −200 (y2 − 0.9)2 + 0.5

p1(y1, y2) = q1(y1) q2(y2).

Problem Description

Minimize
1

2
‖y − yd‖2L2(Ω) +

1

2
‖u− ud‖2L2(Ω)

s.t.


−4y = u+ ξ in Ω

y = 0 on ∂Ω

y ≥ 0, ξ ≥ 0, y ξ = 0 in Ω.

Optimality System

Besides the state y ∈ H1
0 (Ω), control u ∈ L2(Ω) and slack variable ξ ∈ L2(Ω), the

optimality system consists of the adjoint state p ∈ H1
0 (Ω) and a Lagrange multiplier

µ ∈ H−1(Ω) pertaining to the constraint y ≥ 0. The adjoint state p serves a double role,
since it also acts as Lagrange multiplier for the pointwise constraint ξ ≥ 0. As usual for
MPCCs, no multiplier is introduced for the constraint y ξ = 0.

It should be noted that for MPCCs, a canocical first-order optimality condition does not
exist. The following system represents a particular set of first-order necessary conditions,
viz. of strongly stationary type.
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−4y = u+ ξ in Ω

y = 0 on ∂Ω

−4p = y − yd + µ in Ω

p = 0 on ∂Ω

u− ud − p = 0 in Ω

y ≥ 0, ξ ≥ 0, y ξ = 0 in Ω

µ y = 0 in Ω a weak sense
p ξ = 0 in Ω

p ≥ 0 in B
µ ≤ 0 in B in a weak sense.

The set B = {x ∈ Ω : y(x) = ξ(x) = 0} is termed the bi-active set. It is the last
two conditions on the signs of p and µ which are particular for the concept of strong
stationarity.

Since µ belongs only to H−1(Ω), two of the conditions above must be imposed in a weak
sense. This can be done in the following way:

〈µ, v〉H−1(Ω),H1
0 (Ω) = 0 for all v ∈ H1

0 (Ω) satisfying v(x) = 0 where y(x) = 0

〈µ, v〉H−1(Ω),H1
0 (Ω) ≤ 0 for all v ∈ H1

0 (Ω) satisfying v(x) ≥ 0 where y(x) = 0

and v(x) = 0 where ξ(x) > 0.

Supplementary Material

The following functions given in [Meyer and Thoma, 2013, Example 7.1] satisfy the set of
necessary optimality conditions of strongly stationary type above. An important feature
of this selection is that there is a nontrivial bi-active set:

B = {x ∈ Ω : y(x) = ξ(x) = 0} = (0.0, 1.0)× (0.8, 1.0).
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Moreover, second-order optimality conditions have been verified, and thus (y, ξ, u) is
guaranteed to represent a local minimum.

y =

{
z1(x1) z2(x2), x ∈ Ω2

0 elsewhere
(of class C2(Ω))

u =


−z′′1 (x1)− z′′2 (x2), x ∈ Ω2

−z1(x1 − 0.5) z2(x2), x ∈ Ω3

0 elsewhere

ξ =

{
z1(x1 − 0.5) z2(x2), x ∈ Ω3

0 elsewhere
(continuous)

p =

{
p1(Q>x), x ∈ Ω1

0 elsewhere
(continuous, but not C1(Ω))

〈µ, v〉H−1(Ω),H1
0 (Ω) =

∫
∂Ω1

∇p|Ω1 · n1 v ds,

where n1 is the unit outer normal to the rotated square subdomain Ω1. Note that µ is a
line functional concentrated on ∂Ω1. In more explicit terms, it can be expressed as

〈µ, v〉H−1(Ω),H1
0 (Ω) =

∫ 0.85

0.75
Q

(
−0.5 q′1(x1)

20 q1(x1)

)
·
(

0
−1

)
v(x1, 0.85) dx1

+

∫ 0.85

0.75
Q

(
−0.5 q′1(x1)
−20 q1(x1)

)
·
(

0
1

)
v(x1, 0.95) dx1

+

∫ 0.95

0.85
Q

(
20 q2(x2)
−0.5 q′2(x2)

)
·
(
−1
0

)
v(0.75, x2) dx2

+

∫ 0.95

0.85
Q

(
−20 q2(x2)
−0.5 q′2(x2)

)
·
(

1
0

)
v(0.85, x2) dx2.

The remaining data are

z′′1 (x1) = −122 880x4
1 + 122 880x3

1 − 36 864x2
1 + 3 072x1

z′′2 (x2) = −7 324.218 750x4
2 + 11 718.75x3

2 − 5 625x2
2 + 750x1

2

q′1(x1) = −400 (x1 − 0.8)

q′2(x2) = −400 (x2 − 0.9).

Revision History

• 2021–02–11: fixed typo in transformation of data yd and ud on Ω1

• 2013–03–01: problem added to the collection
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