Introduction

Here we present a simple distributed optimal control problem of the heat equation. Problems of this type are examined in detail within [Tröltzsch, 2010, Chapter 3]. The problem was derived as a test for the paper Güttel and Pearson [2017], which required optimal states and controls that are not polynomial in spatial or time variables. The problem is generically usable in dimensions 1 through 3 and maintains a parameter dependence for the regularization parameter β to serve as a test case for the β dependence of solvers.

The 2d version of this problem and analytical solution appear in [Güttel and Pearson, 2017, Section 6.1], where computations for $\beta=0.05$ and final times $T=1$ were conducted. The implementation is provided for $d=2$ as well.

Variables \& Notation

Unknowns

$$
\begin{array}{ll}
u \in L^{2}(\Omega \times I) & \text { control variable } \\
y \in W(0, T):=L^{2}\left(I ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(I ; H^{-1}(\Omega)\right) & \text { state variable }
\end{array}
$$

Given Data

$$
\begin{aligned}
d & \in\{1,2,3\} & & \text { dimension of the problem } \\
T & >0 & & \text { length of time interval } \\
\Omega & =(-1,1)^{d} & & \text { spatial domain } \\
I & =(0, T) & & \text { time interval } \\
Q & =(-1,1)^{d} \times(0, T) & & \text { space-time domain } \\
\Sigma & =\partial \Omega \times(0, T) & & \text { lateral boundary of } Q \\
\beta & >0 & & \text { regularization parameter } \\
y_{d, T} & =\left[\frac{d \pi^{2}}{4}+\frac{4}{d \pi^{2} \beta}\right] e^{T}+\left[1-\frac{d \pi^{2}}{4}-\frac{4}{\left(4+d \pi^{2}\right) \beta}\right] e^{t} & & \text { aux. function for desired state } \\
y_{d} & =y_{d, T}(t) \prod_{k=1}^{d} \cos \left(\frac{\pi x_{k}}{2}\right) & & \text { desired state } \\
y_{0} & =\left(\frac{4}{d \pi^{2} \beta} e^{T}-\frac{4}{\left(4+d \pi^{2}\right) \beta}\right) \prod_{k=1}^{d} \cos \left(\frac{\pi x_{k}}{2}\right) & & \text { initial state }
\end{aligned}
$$

Problem Description

$$
\begin{aligned}
\text { Minimize } & \frac{1}{2} \int_{I} \int_{\Omega}\left(y-y_{d}\right)^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \int_{I} \int_{\Omega} u^{2} \mathrm{~d} x \mathrm{~d} t \\
\text { s.t. } & \left\{\begin{aligned}
y_{t}-\triangle y=u & \text { in } Q \\
y=0 & \text { on } \Sigma \\
y=y_{0} & \text { at } t=0
\end{aligned}\right.
\end{aligned}
$$

Optimality System

The following optimality system for the control $u \in L^{2}(\Omega \times I)$, the state $y \in W(0, T)$, and the adjoint state $p \in W(0, T)$, given in the strong form, characterizes the unique minimizer.

$$
\begin{aligned}
y_{t}-\triangle y & =u & & \text { in } Q \\
y & =0 & & \text { on } \Sigma \\
y & =y_{0} & & \text { at } t=0 \\
-p_{t}-\triangle p & =y-y_{d} & & \text { in } Q \\
p & =0 & & \text { on } \Sigma \\
p & =0 & & \text { at } t=T \\
u & =-\frac{1}{\beta} p & & \text { in } Q
\end{aligned}
$$

Supplementary Material

The optimal state, adjoint state, and control are known analytically:

$$
\begin{aligned}
& y=\left(\frac{4}{d \pi^{2} \beta} e^{T}-\frac{4}{\left(4+d \pi^{2}\right) \beta} e^{t}\right) \prod_{k=1}^{d} \cos \left(\frac{\pi x_{k}}{2}\right) \\
& p=-\left(e^{T}-e^{t}\right) \prod_{k=1}^{d} \cos \left(\frac{\pi x_{k}}{2}\right) \\
& u=\frac{1}{\beta}\left(e^{T}-e^{t}\right) \prod_{k=1}^{d} \cos \left(\frac{\pi x_{k}}{2}\right)
\end{aligned}
$$

Notice that the sign of p is reversed in [Güttel and Pearson, 2017, Section 6.1]. Consequently, the control law reads $u=\frac{1}{\beta} p$ in [Güttel and Pearson, 2017, Section 6.1].

References

S. Güttel and J. W. Pearson. A rational deferred correction approach to parabolic optimal control problems. IMA Journal of Numerical Analysis, online-first, 2017. doi: 10.1093/imanum/drx046. URL https://academic.oup.com/imajna/ advance-article/doi/10.1093/imanum/drx046/4372128.
F. Tröltzsch. Optimal Control of Partial Differential Equations, volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 2010.

