Introduction

This is a distributed optimal control problem for a semilinear 1D parabolic reactiondiffusion equation, where traveling wave fronts occur. The state equation is known as Schlögl model in physics and as Nagumo equation in neurobiology. In this context, various goals of optimization are of interest, for instance the stopping, acceleration, or extinction of a traveling wave. Here, we discuss the problem of stopping a wave front at a certain time and keeping it fixed afterwards. This problem appears in [Buchholz et al., 2013, Section 5.4]. In the same paper, additional examples can be found which cover the other optimization goals mentioned above. It has the explicitly known optimal control (forcing) $f_{\text {stop }}$ defined below and displayed in Figure 0.2.

Variables \& Notation

Unknowns

$$
\begin{aligned}
f \in L^{2}(Q) & \text { control variable (forcing) } \\
u \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap H^{1}\left(0, T ; H^{1}(\Omega)^{\prime}\right) \cap L^{\infty}(Q) & \text { state variable }
\end{aligned}
$$

Given Data

$$
\begin{aligned}
& \Omega=(0, L) \quad \text { spatial domain } \\
& L=20 \quad \text { side length of domain } \\
& Q=\Omega \times(0, T) \quad \text { computational domain } \\
& T=5 \quad \text { terminal time } \\
& u_{0}(x)=\left\{\begin{array}{ll}
1.2 \sqrt{3}, & x \in[9,11] \\
0, & \text { elsewhere },
\end{array} \quad\right. \text { initial condition } \\
& \lambda=10^{-6} \quad \text { Tikhonov regularization parameter } \\
& u_{Q}(\cdot, t)=\left\{\begin{array}{ll}
u_{\text {nat }}(\cdot, t), & t \in[0,2.5] \\
u_{\text {nat }}(\cdot, 2.5), & t \in(2.5, T]
\end{array} \quad\right. \text { desired state } \\
& u_{\text {nat }} \\
& \text { solution of the } \mathrm{PDE}(0.1) \text { for } f \equiv 0 \text {. }
\end{aligned}
$$

The natural uncontrolled state $u_{\text {nat }}$ is shown in Figure 0.1. In the figure, the horizontal axis shows the spatial variable x while the vertical one displays the time t. An analytical expression for $u_{\text {nat }}$ is not known.

Problem Description

$$
\begin{array}{rlrl}
\text { Minimize } & \frac{1}{2} \iint_{Q}\left(u(x, t)-u_{Q}(x, t)\right)^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\lambda}{2} \iint_{Q} f^{2}(x, t) \mathrm{d} x \mathrm{~d} t \\
\text { s.t. }\left\{\begin{aligned}
\frac{\partial u}{\partial t}(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)+\frac{1}{3} u^{3}(x, t)-u(x, t) & =f(x, t) & & \text { in } Q \\
u(x, 0) & =u_{0}(x) & & \text { in } \Omega \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t) & =0 & & \text { in }(0, T) .
\end{aligned}\right. \tag{0.1}
\end{array}
$$

Notice that the PDE has a non-monotone nonlinearity. The associated homogeneous elliptic (stationary) equation admits three different solutions; namely, the functions $u_{1}(x) \equiv-\sqrt{3}, u_{2}(x) \equiv 0$, and $u_{3}(x) \equiv \sqrt{3}$.

Optimality System

The following optimality system for the state u, the control f, and the adjoint state p, given in the strong form, represents first-order necessary optimality conditions.

$$
\begin{aligned}
\frac{\partial u}{\partial t}(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)+\frac{1}{3} u^{3}(x, t)-u(x, t) & =f(x, t) & & \text { in } Q \\
u(x, 0) & =u_{0}(x) & & \text { in } \Omega \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t) & =0 & & \text { in }(0, T), \\
-\frac{\partial p}{\partial t}(x, t)-\frac{\partial^{2} p}{\partial x^{2}}(x, t)+u^{2}(x, t) p(x, t)-p(x, t) & =u(x, t)-u_{Q}(x, t) & & \text { in } Q \\
p(x, T) & =0 & & \text { in } \Omega \\
\frac{\partial p}{\partial x}(0, t)=\frac{\partial p}{\partial x}(L, t) & =0 & & \text { in }(0, T), \\
f(x, t) & =-\frac{1}{\lambda} p(x, t) & & \text { in } Q .
\end{aligned}
$$

Supplementary Material

The optimal state and the optimal control are given by:

$$
\begin{aligned}
u(x, t) & =u_{Q}(x, t), \\
f_{\text {stop }}(x, t) & = \begin{cases}0 & \text { for } t \leq 2.5, \\
\frac{1}{3} u_{\text {nat }}^{3}(x, 2.5)-u_{\text {nat }}(x, 2.5)-\frac{\partial^{2}}{\partial x^{2}} u_{\text {nat }}(x, 2.5), & \text { for } t>2.5 .\end{cases}
\end{aligned}
$$

These functions are shown in Figure 0.2.

References

R. Buchholz, H. Engel, E. Kammann, and F. Tröltzsch. On the optimal control of the Schlögl model. Computational Optimization and Applications, 56(1):153-185, 2013. doi: 10.1007/s10589-013-9550-y.

Figure 0.1: Initial state u_{0} (left) and natural uncontrolled state $u_{\text {nat }}$ (right).

Figure 0.2: Control $f_{\text {stop }}$ (left) and desired state u_{Q} (right).

